Logic Masters Deutschland e.V.

18 Pentominoes

(Eingestellt am 29. Januar 2024, 16:00 Uhr von Blobz)

Image generated with Hotpot AI Art Generator

Normal sudoku rules apply.

Place 8 different pentominoes (no repeats by reflection or rotation) in the grid such that each is completely enclosed within a box, each touches its neighbours diagonally along a grey line, and each contains digits that sum to 18. No pentominoes touch orthogonally.

The grey lines (links) each show the sum of the two (non-repeating) digits each side of the link. All possible links are shown.

For example, r3c8 is part of the pentomino in box 3, touching r4c9 diagonally, which is part of the pentomino in box 6. The sum of these two digits is 5. Neither r3c9 nor r4c8 can be part of a pentomino.

Have fun, leave a comment if you enjoy the puzzle!

Play this puzzle on SudokuPad

Pentomino Puzzle Series

Lösungscode: Row 1 followed by Row 2

Zuletzt geändert am 1. April 2024, 22:52 Uhr

Gelöst von vollbesonderbar, teff, Franjo, trashghost, flipping, ozgaz, KNT, Ancaeus, KyleBaran, Kallor, rictech, AvonD, Sinuit, actiondirecte, zrbakhtiar, MalkoMann2, saskia-daniela, mcc, rcg, lmdemasi, ... GexTed, SudokuHero, BahetX, jmaen, Askloomok, MaxSmartable, MorsBe, Uhu, duckling, BabaYaga, sockerbecca, PippoForte, MontanaPearl, Whiterisere, 3ColorTheorem, mluciano98, TheUnKn0Wen, Hark Vitrina
Komplette Liste

Kommentare

am 7. April 2024, 10:40 Uhr von SudokuHero
What a thoroughly enjoyable series.

am 3. Februar 2024, 09:21 Uhr von Crusader175
Very enjoyable!

am 3. Februar 2024, 06:15 Uhr von scottgarner
I'm normally irrationally intimidated by pentomino puzzles, but I really enjoyed this one!

am 30. Januar 2024, 21:56 Uhr von cam
Cool puzzle! Just the short break I needed at work :)

Zuletzt geändert am 30. Januar 2024, 15:30 Uhr

am 30. Januar 2024, 07:06 Uhr von Silverscree
Can pentominoes touch diagonally without a link if the digits on the diagonal connection are the same? That wouldn't be a possible connection, so I'm not sure if that's the intended read.

Edit: solved it without assuming that's fine and it didn't feel awkward to me :)

“All possible links are shown”; digits on links are non-repeating
~Blobz

am 29. Januar 2024, 16:56 Uhr von vollbesonderbar
Nice!

Schwierigkeit:2
Bewertung:96 %
Gelöst:101 mal
Beobachtet:9 mal
ID:000F6M

Variantenkombination Online-Solving-Tool Pentominos

Lösung abgeben

Lösungscode:

Anmelden