Logic Masters Deutschland e.V.

Year of the snake

(Eingestellt am 5. Dezember 2024, 19:14 Uhr von Adrian71)

  • Normal sudoku rules apply
  • Digits in ordinary killer cages sum to the given total and cannot repeat in a cage
  • Digits in golden cages multiply to the given total and can repeat in a cage
  • Digits on one of the main diagonals sum to 20. Digits on the other main diagonal sum to 25
  • To celebrate the year of the snake, a snake is hiding in the puzzle. This snake can move horizontally, vertically and diagonally, but cannot cross itself or visit digits in any cages. The snake consists of 12 digits in total and is both modular and entropic, see definitions below.

    • Play on sudokupad

      Definitions:

      Entropic Lines: Any set of three sequential cells along an entropic line must contain a low digit (1,2,3), a middle digit (4,5,6), and a high digit (7,8,9)

      Modular lines: every set of three sequential digits along a line must contain a complete set of residues modulo 3, i.e. one digit from {1,4,7}, one from {2,5,8}, and one from {3,6,9}.

Lösungscode: Digits of row 8

Zuletzt geändert am 31. Dezember 2024, 11:05 Uhr

Gelöst von SKORP17, jalebc, askaksaksask, JustinTucker, mew_rocks, jkuo7, annnz, sorryimLate, P12345, SudokuHero, madhupt, petecavcc, tuzi, OGRussHood, QuiltyAsCharged, MikeMeech, Uhu, NEWS, Yaoning
Komplette Liste

Kommentare

am 15. Januar 2025, 20:02 Uhr von QuiltyAsCharged
Excellent, original puzzle. It earns the 4 stars imo. Finding the snake and using it to disambiguate certain cells was really unusual and cool! But that's only the second hardest part.

am 2. Januar 2025, 21:37 Uhr von petecavcc
Nice, 3 stars for me

am 1. Januar 2025, 06:12 Uhr von sorryimLate
Wow, that's one sneaky snake disambiguating deadly patterns. Awesome puzzle, definitely 3* though imo. Thanks!

am 5. Dezember 2024, 22:54 Uhr von askaksaksask
This gem plays like a Zetamath puzzle, and i mean that as a full-throated compliment. The pressure in this puzzle comes from a variety of interesting ways, the interactions are such fun. Bravo!

Schwierigkeit:4
Bewertung:82 %
Gelöst:19 mal
Beobachtet:4 mal
ID:000L09

Variantenkombination

Lösung abgeben

Lösungscode:

Anmelden