Logic Masters Deutschland e.V.

Pseudoku

(Eingestellt am 2. Dezember 2024, 10:19 Uhr von starwarigami)


Normal Sudoku rules (mostly) apply.

Fill the grid with the digits 1-9 (and 0) so that (almost) no digit repeats in any row, column or box.
(Each unique digit may appear twice in exactly one row, column OR box. No row, column or box may contain more than one repeated digit.)

Digits separated by a white dot are consecutive.
Digits separated by a black dot are in a 2:1 relationship (i.e. one is double the other).
Digits separated by an X sum to 10.
Digits separated by a V sum to 5.
Not all dots, Xs and Vs are necessarily given.

Sudokupad link


Please also check out these other recent puzzles of mine that you may have missed:

Lösungscode: Row 1 (left to right) - 9 digits, no spaces

Zuletzt geändert am 8. Februar 2025, 21:14 Uhr

Gelöst von 9Rookienumbers, SKORP17, Blake Saligia, sirkohli, mihel111, shifman23, robokong, Rickium, Chelo, atomvic, laky, skuntsel, Nylimb
Komplette Liste

Kommentare

am 2. Februar 2025, 00:49 Uhr von starwarigami
Clarified the black dot rule in the description

Zuletzt geändert am 2. Februar 2025, 00:42 Uhr

am 1. Februar 2025, 12:36 Uhr von shteev
So monumentally stuck on this puzzle that I'm thinking I misunderstood the rules. So... there's only ever ONE repeated 7, for example, in total, across rows, columns, and boxes? Not one for the rows, and one more for the columns, and one more for the boxes?

@shteev - correct. If a 7 repeats in a row, it must not also repeat in a box or a column.

am 30. Januar 2025, 22:39 Uhr von skuntsel
A great idea and a great puzzle! People should definitely solve this first before attempting composite puzzles to familiarize themselves with the ruleset. Very original idea, although very demanding to meticulously pencilmark what can and what cannot be in the cells, as well as when the situation changes. Thanks, starwarigami!

am 2. Dezember 2024, 21:20 Uhr von mihel111
Beautiful puzzle. The mid part of the solve is something.
Thanks a lot.

Schwierigkeit:4
Bewertung:83 %
Gelöst:13 mal
Beobachtet:5 mal
ID:000KYN

Variantenkombination

Lösung abgeben

Lösungscode:

Anmelden