Logic Masters Deutschland e.V.

Number Theory Miracle

(Eingestellt am 4. November 2024, 07:43 Uhr von ivanip)

This is part of an Exam question for the course "MATH4141: Number Theory and Applications" at HKUST. Some knowledge of elementary number theory is required to solve this puzzle.


Click on the puzzle image to play.

Fill in the 4 × 4 grid with four distinct digits from {0, 1, 2, 3, 4, 5, 6, 7, 8} such that
  • Each row, column, and L-shaped region does not contain repeated digits.
  • The digits are all quadratic residues (mod 17).
  • The 4-digit integer formed by the first row is a perfect square.
  • Each clue outside the grid shows the number of ways the 4-digit integer in that column/row can be expressed as a sum of two squares of nonnegative integers (up to permutation).
Note: If a “4-digit integer” starts with a zero, we consider it a 3-digit integer instead. (e.g. “0123” is treated as 123.)

Lösungscode: Enter the digits of the 3rd row followed by the 4th row.

Zuletzt geändert am 4. November 2024, 10:20 Uhr

Gelöst von Dr Logic, marcmees, CHalb, SKORP17, Clueless, toboed
Komplette Liste

Kommentare

am 4. November 2024, 08:58 Uhr von Dr Logic
Wonderful puzzle! Felt more like a 2 star for me, as the most difficult thing is trying to remember first year number theory.
Thanks for setting!

Schwierigkeit:4
Bewertung:N/A
Gelöst:6 mal
Beobachtet:4 mal
ID:000KKL

Standardrätsel Rätselkombination Rätselvariante Variantenkombination Mathematikkenntnisse Klein

Lösung abgeben

Lösungscode:

Anmelden