Logic Masters Deutschland e.V.

The Rectes

(Eingestellt am 4. April 2024, 04:04 Uhr von josebastian8)

Rules
  • Normal sudoku rules apply.
  • Cells separated by a knight's move (chess) cannot contain the same digit.
  • We define a "recte" as a rectangle of size 1 x n (or n x 1) that acts both as a renban line and as a thermometer (it consists of n consecutive numbers that increase from an extreme). Fill the grid with a recte of size 9 and two rectes of each size from 1 to 8. All rectes must be different and cannot intersect.

Link

Lösungscode: Row 9 followed by colum 9 followed by the sum of the digits on the main diagonal [R1C1 to R9C9] (No spaces, 20 digits total)

Zuletzt geändert am 14. April 2024, 13:55 Uhr

Gelöst von Greg, EFlatMinor, jalebc, Carolin, bernhard, Hannah_GBS, SKORP17, geronimo92, Isfan, Kworb, AdamPI, running_fatty, annnz, AltVoid, elshan, Crul, TrymanRacing, jadezki, appletrapezoid, hungkenchanlee, ... tkrahn98, rcg, drf93, sujoeku_, chain.reader, fstilus, indolentfool, Uhu, Damax, Thomster, paranoid, Hugo-Bob, BlackApolloX, Azvaril, elpizw, Koba, jgarber, neinina98, timww572, Drawoon, PippoForte
Komplette Liste

Kommentare

Zuletzt geändert am 13. April 2024, 14:05 Uhr

am 13. April 2024, 14:04 Uhr von chain.reader
It looks hard, but then you start noticing that the locations for them are forced... nifty puzzle

Zuletzt geändert am 4. April 2024, 16:53 Uhr

am 4. April 2024, 16:08 Uhr von geronimo92
Unique because of the knight's move and all cells are used..... in the solution code, you should have precised that the diagonal you are talking about is the negative one (ambiguous !!)

--------------
Fixed, thanks for the warning!

am 4. April 2024, 14:42 Uhr von Hannah_GBS
Very pretty puzzle (especially when giving each 'recte' a different background colour!)

Zuletzt geändert am 4. April 2024, 10:41 Uhr

am 3. April 2024, 22:52 Uhr von josebastian8
I know that guessing the solution may be quite easy, but try to prove why it must be unique!

Schwierigkeit:1
Bewertung:75 %
Gelöst:48 mal
Beobachtet:7 mal
ID:000HJR

Variantenkombination Online-Solving-Tool

Lösung abgeben

Lösungscode:

Anmelden