Logic Masters Deutschland e.V.

World Goverment (One Piece)

(Eingestellt am 30. November 2023, 13:12 Uhr von Jasura)

Puzzle: CtC

Rules:

Normal Sudoku rules apply.

Digits in cells separated by a black dot are in a 1:2 ratio. Not all dots are necessarily given.

Digits along a purple Renban line must form a consecutive set of non repeating digits in any order.

Digits in cells separated by an X sum to 10. Not all X are necessarily given.

No adjacent digits may be consecutive.

Cells in the same relative position in their boxes cannot contain the same digit.

Kropki Cross: The digits in the red cells are in a Kropki relation with the digit in the blue cell. This means that they are either consecutive or in a 1:2 ratio with the digit in R5C5.

Lösungscode:

Digits in Box 5, left to right, top to bottom.


Gelöst von isajo4002, efnenu, Amedoru, seeppp, jalebc, asver, pepe74287, pookster, Fizz, Wooter, DanyMoreira60, AN_not_IO, by81996672, Fisherman, SKORP17, nyxie, akamchinjir, krdsss, halftime, Crul, Corey115, ... Lovejoy , TaeChi, AnotherBubblebath, BlackApolloX, chanelaw, ManuH, Carolin, stonetim, katy.lanka, GorgeousNicko, Lodinn, cornish-john, humaLautema, PippoForte, NEWS, Jodelbanane, MyWay90, MysticMan
Komplette Liste

Kommentare

am 26. Januar 2024, 22:34 Uhr von stonetim
I've been doing a lot of Disjoint puzzles to get practice recently and really enjoyed this one.

Made some initial headway, then got stumped until I read the rule for no consecutive digits. Then was smooth sailing to a satisfying finish.

Zuletzt geändert am 8. Dezember 2023, 15:29 Uhr

am 8. Dezember 2023, 15:28 Uhr von rafalos98
very nice puzzle

am 1. Dezember 2023, 03:03 Uhr von ryanprobably
Turns out this puzzle goes from impossible to incredibly approachable if you remember the "cells in the same relative position cannot contain the same digit" rule

am 30. November 2023, 16:13 Uhr von Fisherman
Wery Good.

Schwierigkeit:2
Bewertung:89 %
Gelöst:124 mal
Beobachtet:6 mal
ID:000G0C

Standardrätsel Rätselvariante Variantenkombination Neu

Lösung abgeben

Lösungscode:

Anmelden