Logic Masters Deutschland e.V.

Complete Magic

(Eingestellt am 31. Oktober 2022, 14:00 Uhr von tribution)

- Normal Sudoku rules apply

- Every 3x3 region is a semi-magic square (each row and column sum to the same number)

- Digits seperated by a white dot are consecutive. Digits seperated by a black dot have a ratio of 1:2

Solve on f-puzzles

Solve on CTC

Lösungscode: Column 3 and column 7

Zuletzt geändert am 4. November 2022, 11:55 Uhr

Gelöst von cegie, Matti64, marcmees, SKORP17, kublai, pazqo, halftime, Eloi.blok, absolutebeginner, Quarterthru, Qodec, efnenu, arteful, WithIceCream, delstg, StephenEsven, metacom, Dag H, Mr.CHEN, tobymgk, ... moss, abadx, Saskia, jgarber, Kekes, Crul, Blombit, drifting, Thomster, rcg, pepe74287, Montikulum, Roberto, stonetim, radium, Terrapin, Incurrsion, yusuf17, ManniMensen, Javier Rebottaro, Lodinn
Komplette Liste

Kommentare

am 10. November 2022, 19:20 Uhr von Rollo
Is there a semi magic square with a 5 in the center that is not real magic?

am 4. November 2022, 11:55 Uhr von tribution
changed rule description to use the term 'semi-magic square'

am 2. November 2022, 22:22 Uhr von chain.reader
modification to the ruiles needed...
central square is indeed a magic square, the rest are not (but have equal sum rows/columns)

am 1. November 2022, 01:49 Uhr von cdwg2000
It is not magic square.

am 1. November 2022, 01:37 Uhr von Mr.CHEN
It's a good puzzle, but I just want to say one thing: if the sum of the rows and columns of a square is equal, but the diagonal lines are not equal, then it can only be called a "quasi-magic square" rather than a real magic square. In this Sudoku, only the center box is a real magic square, and the others are only quasi-magic squares (because the center of the real magic square can only be 5). I hope to correct this in the description.

am 1. November 2022, 01:30 Uhr von Mr.CHEN
It's a good puzzle, but I just want to say one thing: if the sum of the rows and columns of a square is equal, but the diagonal lines are not equal, then it can only be called a "quasi-magic square" rather than a real magic square. In this Sudoku, only the center box is a real magic square, and the others are only quasi-magic squares (because the center of the real magic square can only be 5). I hope to correct this in the description.

Schwierigkeit:1
Bewertung:82 %
Gelöst:121 mal
Beobachtet:8 mal
ID:000BV2

Rätselvariante Variantenkombination

Lösung abgeben

Lösungscode:

Anmelden