Logic Masters Deutschland e.V.

Magical Disjointed Flower Sudoku

(Eingestellt am 6. November 2021, 18:57 Uhr von davidn)

Normal sudoku rules apply. No given digits. Additional: 1. Cells in the same relative position in a 3x3 box cannot contain the same digit (e.g. r1c1 and r4c4 cannot contain the same digit). (disjoint groups) 2. The central 3x3 box must form a magic square (including it's diagonals). 3. the central 3x3 box can be read left-to-right as three 3-digit decimal numbers, ordered vertically: 'top', 'middle' and 'bottom'. When the sum of the 'top' and 'middle' numbers is subtracted from the 'bottom' number, the total equals '3'. (e.g. 789 - (123 + 456) = 210 =/= 3) 4. Each digit in the central 3x3 box must index (from right-to-left then top-down) the position of the '5' in each 3x3 box, with respect to the relative position within the central 3x3 box (e.g. if r5c4 is a '7', then r6c1 must be a '5'). 5. Except for within the central 3x3 box, the central digits in each 3x3 box must have a difference of exactly 5 from each of the digits forming the central 3x3 box, with respect to the relative position of the digits within the central 3x3 box (e.g. if r5c4 is a '7', then r5c2 must be a '2'). 6. Except for within the central 3x3 box, the '5' digits as well as the central digits in each 3x3 box form 'incomplete' rows, columns and diagonals of three digits in each 3x3 box. The third 'completing' digit in each 3x3 box must be equal to the difference between the other two digits forming the 'incomplete' row, column or diagonal of three digits (e.g. if r6c1 is a '5' and r5c2 is a '2', then r4c3 must be a '3').

Lösungscode: Column 1 followed by Row 9, repeating the bottom-left digit. e.g. 123456789987654321

Zuletzt geändert am 7. November 2021, 12:36 Uhr

Gelöst von SKORP17, Isa
Komplette Liste

Kommentare

am 7. November 2021, 12:36 Uhr von davidn
Hopefully made the ruleset a bit clearer, as kindly suggested to me by SKORP17.

am 6. November 2021, 19:15 Uhr von davidn
thank you to SKORP17, for correcting my solution code description

Schwierigkeit:3
Bewertung:N/A
Gelöst:2 mal
Beobachtet:7 mal
ID:00086R

Lösung abgeben

Lösungscode:

Anmelden