Logic Masters Deutschland e.V.

3x3 Clones

(Eingestellt am 28. Oktober 2021, 11:48 Uhr von Scruffamudda)

Normal sudoku rules apply: Each row, column and 3x3 box contain the digits 1 to 9.

Clones: In this puzzle every 3x3 box has 2 identical clones in the grid with the digits 1 to 9 in exactly the same positions.

Kropki: Digits in cells separated by a black dot have a ratio of 1:2. Digits in cells separated by a white dot are consecutive. Not all dots are given.

Even: Grey squares contain even digits.

CTC app link

f-puzzles link

Lösungscode: Column 4

Zuletzt geändert am 28. Oktober 2021, 13:39 Uhr

Gelöst von weiken, Miuka, XhcnoirX, Fedo , rimodech, jkl, Julianl, LMettrop, jguer, tlgeotau, SKORP17, Nairi, gbrljt, saskia-daniela, marcmees, Danlej085, Raistlen, krzysztof.kiemel, DeckersYay, skywalker, ... greyden, JayAreEee, avishai, ManuH, cfop, zeecomoon, geronimo92, zorant, Felis_Timon, rcg, jalebc, Crul, Overhead, Klisz, Carolin, Just me, zrbakhtiar, Jodelbanane, larinae, asii, vmirandaa
Komplette Liste

Kommentare

am 31. Oktober 2021, 23:49 Uhr von uvo_mod
Labels angepasst.

am 29. Oktober 2021, 14:07 Uhr von eswolters
Finally solved a puzzle :P

am 29. Oktober 2021, 08:43 Uhr von Cyraneo
A highly enjoyable solve. I stared at this for ages trying to find the trick then it finally all started to come together. Thanks Scruffamudda!

Zuletzt geändert am 28. Oktober 2021, 18:50 Uhr

am 28. Oktober 2021, 18:49 Uhr von marcmees
totally logical to ask just one series of 9 digits as solution code. quick and fun solve.

am 28. Oktober 2021, 18:26 Uhr von gbrljt
Exceptional puzzle with mind-blowingly smooth solving path. 10/10 highly recommend!

am 28. Oktober 2021, 13:39 Uhr von Scruffamudda
Updated solution code

Zuletzt geändert am 28. Oktober 2021, 13:42 Uhr

am 28. Oktober 2021, 13:34 Uhr von weiken
Solution code works with column 4
------
Sorry! and thank you for pointing that out! Updated now. - Scruffamudda

Schwierigkeit:2
Bewertung:91 %
Gelöst:60 mal
Beobachtet:8 mal
ID:00083B

Variantenkombination Online-Solving-Tool

Lösung abgeben

Lösungscode:

Anmelden