Sudoku Bachelor
Dieses Rätsel ist von 真笑(洪卫华) inspiriert.
Solve online in Penpa+ (thx Henrypijames!) or F-Puzzles (thx snowyegret!)
Verwende die üblichen Sudoku-Regeln.
An allen Stellen, an denen ein 2x2-Gebiet genau ein Paar aufeinanderfolgender Ziffern enthält, ist ein Kreis auf dem Schnittpunkt der Gitterlinien dieses Gebietes gesetzt. Die in dem Kreis angegebenen Ziffern stehen in dem 2x2-Gebiet, sind aber nicht Teil des aufeinanderfolgenden Paares in diesem Gebiet. Wenn zum Beispiel 4-6-7-9 in dem 2x2-Gebiet platziert sind, steht 4-9 in dem Kreis. Die Kombinationen 1-2-3-8, 1-2-2-8 und 2-3-5-6 bekommen keinen Kreis. Falls ein Gleichheitszeichen im Kreis steht, dann sind die zwei Ziffern, die nicht zu dem Paar gehören, gleich. Zum Beispiel: 3-4-9-9.
Lösungscode: Zeile 1, gefolgt von Spalte 8.
am 4. September 2022, 07:46 Uhr von Richard
Added links and tag for online solving. Thx Henrypijames and snowyegret!
am 12. August 2022, 14:34 Uhr von snowyegret
https://f-puzzles.com/?id=2ojdy588
am 21. Januar 2022, 00:49 Uhr von Nick Smirnov
@Richard, but why is this sudoku called Bachelor? :D
---
@Nick: I think because there is exactly one 'pair' and two 'bachelors' around each circle.
am 15. April 2021, 21:45 Uhr von Richard
@Henry: my apologies; the puzzle in your link is correct; the puzzle in Mavericks link is missing the equal sign. :-)
am 15. April 2021, 06:33 Uhr von cdwg2000
Thank you Richard for further clarification of the rules! There is a slightly more difficult problem here, maybe you can try it if you are interested: https://logic-masters.de/Raetselportal/Raetsel/zeigen.php?id=0004ZJ
am 15. April 2021, 06:25 Uhr von indecisive1994
Seemed very daunting at first, but it went very smoothly after getting into it. Very interesting idea, one of my favorite puzzles I've solved!
am 14. April 2021, 16:53 Uhr von hamslice
I thought I'd lost the plot last night!
Regardless of the setting issues, the logic was nice to wind down with before bed. :)
am 14. April 2021, 16:17 Uhr von henrypijames
In the Penpa+ link I provided, there is already (and always has been) a circle with an equal sign between box 3 and 6. Should there be a second such circle?
am 14. April 2021, 12:48 Uhr von marcmees
negative constraint almost not needed.
thanks for this weekly piece of joy.
am 14. April 2021, 11:48 Uhr von cdwg2000
As far as I know, this rule set requires patience and negative constraints apply. If the marked circled numbers are A and B, all the numbers ABCD in the four squares of the circle meet: 1. A and B are non-continuous numbers; 2. C and D are continuous numbers; 3. C and D are not continuous with A or B; 4. ABCD are not equal. If the marked circle “=” sign, there are numbers abcd: 1. Two numbers must be equal; 2. The other two numbers must be continuous; 3. The continuous number and the third number must not be continuous.
am 14. April 2021, 11:09 Uhr von Richard
@Henry: thanks for the link. And the previous links too.
@Henry: in the link is missing a dot with an equal-sign. Can you still add that?
am 14. April 2021, 11:06 Uhr von Richard
@Henry: 1667 does not qualify for a circle. It is very similar to the example 1228 as written in the instructions.
am 14. April 2021, 11:05 Uhr von henrypijames
Clarification of rules: Does 1667 qualify for a circle? It could be interpreted as either one or two consecutive pairs.
Edit: Yes, sorry I didn't study the rules carefully enough. The 1228 example addressed my question already.
am 14. April 2021, 10:46 Uhr von henrypijames
Penpa+: https://git.io/JOsvx
am 14. April 2021, 04:28 Uhr von cdwg2000
@Richard
Now it works fine.
am 14. April 2021, 04:09 Uhr von Richard
The description of the solution code was invalid, so it was changed.
@cdwg2000: you are right; one circle was missing. I missed that. My apologies!
It is now added.