Logic Masters Deutschland e.V.

Kropki on Double Torus

(Eingestellt am 28. Oktober 2020, 19:35 Uhr von JivkoJ)

The board consists of two layers. Each layer is a double-cyclic square a.k.a. torus. (Torus is also popular as the shape of Sigil, the City of Doors.)

PUZZLE RULES

- Standard SUDOKU rules apply for each layer/torus

- For each layer/torus ALL BLACK Kropki dots are given. (Those that indicate RATIO OF 2 between cells.)

- “PORTALS” between layers/tori are represented with letters (colors on f-puzzles). Digits of corresponding cells of each “portal” have RATIO OF 2. NOT ALL possible “portals” are visible.

- ANTI-KING rules apply for digits 4, 5 and 6 on each TORUS. (No same digit can appear one cell diagonally adjacent from itself.)

Penpa+ (by SudokuExplorer):

Both Layers:https://tinyurl.com/yypt68ob

F-Puzzles:

Left Layer: https://f-puzzles.com/?id=y3nzm8zc

Right Layer (rotated right): https://f-puzzles.com/?id=y25vemq4

Enjoy!

Lösungscode: Row 2 of the picture, both layers - 12 digits

Zuletzt geändert am 29. Oktober 2020, 09:23 Uhr

Gelöst von ThrowngNinja, Storm, SudokuExplorer, Narayana, fpac, tyb, ArisK, Statistica, kyled103, NikolaZ, zorant, bernhard, sirtramola, moss, Player, Nusi, ArchonE, tinounou, skywalker, bflat, Zzzyxas, JdPL, karen_birgitta, lutzreimer, ManuH, jchan18, ParaNox, Uhu, vmirandaa, ako, zrbakhtiar, rav
Komplette Liste

Kommentare

Zuletzt geändert am 17. Juni 2024, 19:13 Uhr

am 6. April 2023, 06:20 Uhr von zrbakhtiar
on the right layer, 1 and 4 can be swapped and still obey the rules.

Not exactly => Switching 1-4 violates circular Anti-King dependencies (since each layer is Torus-shaped).

am 29. Oktober 2020, 09:23 Uhr von JivkoJ
One rule removed.
(Thank you Statistica)

am 29. Oktober 2020, 07:55 Uhr von JivkoJ
Penpa+ link added.
(Thank you SudokuExplorer!)

am 28. Oktober 2020, 23:01 Uhr von SudokuExplorer
Here's a penpa+ link: https://tinyurl.com/yypt68ob

Schwierigkeit:2
Bewertung:93 %
Gelöst:32 mal
Beobachtet:11 mal
ID:0004L2

Rätselvariante Kantenverklebung Dreidimensional

Lösung abgeben

Lösungscode:

Anmelden