Logic Masters Deutschland e.V.

Anti-sudoku puzzle #3

(Eingestellt am 17. Februar 2020, 06:56 Uhr von Nylimb)

This is the opposite of a sudoku puzzle:

Put a number from 1 to 9 in each cell so that in each row, column, and 3x3 box no number occurs exactly once. I.e. if a number occurs at all, it must occur at least twice.

I think this is much harder than Anti-sudoku puzzle #2. But there is a logical path to the solution; it's not necessary to make multiple copies of the grid to try different possibilities.

I created most of the puzzle by hand, but used a computer program that I wrote to explore ways to finish it.

The puzzle is available on Penpa.

Lösungscode: Row 7 and column 5.

Zuletzt geändert am 22. Oktober 2020, 23:43 Uhr

Gelöst von cdwg2000, r45, adam001, zuzanina, ch1983, Julianl, DocLogic, zorant, Ragna, Phistomefel, ropeko, Uhu, marcmees, Statistica, Nothere, hepcecob, sf2l, ManuH, tuace, Realshaggy, Matt, NikolaZ, Mody, AnnaTh, Mesmer, pin7guin, Ours brun, cornuto, ildiko, matter, harrison, polar, Alex, HawkAvatar, Vebby, creo
Komplette Liste

Kommentare

am 22. Oktober 2020, 23:43 Uhr von Nylimb
Added Penpa link.

Zuletzt geändert am 18. September 2020, 08:31 Uhr

am 17. September 2020, 13:53 Uhr von cdwg2000
Video problem solving from Bilibili website: https://b23.tv/bwCo8o

@cdwg2000: Thanks for the link. I don't understand the language, but it was interesting to follow the logic anyway.

am 7. April 2020, 12:36 Uhr von pin7guin
Komisches Gefühl, so gegen die "normalen" Regeln zu lösen...

am 1. März 2020, 22:54 Uhr von Mesmer
I figured out the logic early, but, somehow I messed up everytime, and it took me the whole day to solve it. So, @Nylimb amazing job and fork you :)))

am 17. Februar 2020, 09:48 Uhr von Nylimb
Fixed a typo.

Zuletzt geändert am 17. Februar 2020, 08:38 Uhr

am 17. Februar 2020, 08:37 Uhr von cdwg2000
Yeah.

The puzzle can be done through a purely logical path.

Schwierigkeit:4
Bewertung:94 %
Gelöst:36 mal
Beobachtet:2 mal
ID:00037U

Rätselvariante Computerhilfe

Lösung abgeben

Lösungscode:

Anmelden