No three odd/even in line
Solve online in F-Puzzles (thanks Nick Smirnov!)
Platziere die Ziffern von 1 bis 9 in jede Zeile, jede Spalte und jeden 3x3-Block. Die maximale Anzahl benachbarter ungerade Zahlen und ebenso die maximale Anzahl benachbarter gerader Zahlen in jeder Zeile oder Spalte ist zwei.
Lösungscode: Spalte 3, gefolgt von Spalte 7.
am 26. November 2023, 02:24 Uhr von cascadeshiker
Very nice variant. An enjoyable solve. Thanks.
am 25. Mai 2023, 04:27 Uhr von csearles
Even though I found the first digit with the logic mentioned in your hidden comment, this was still very hard since I couldn't find any other strat after the first digit and had to use the Nishio tactic until a contradiciton arised for one digit at almost the full puzzle (trial and error in the head basically which is nuts). Luckily for me it worked but it still took a lot of time. If you have any more strats after the first digit placed that you mentioned, please let me know.
---
Reply: colouring or marking is very helpful in sudokus with odd/even restrictions. Without knowing whether R3C1 is 4 or 8, you know it must be even. By marking all cells in the grid with two different colours for odd or even, you might spot possibilities earlier.
am 23. November 2021, 19:45 Uhr von Richard
Added link for online solving. Thx Nick!
am 2. Dezember 2020, 00:32 Uhr von Nick Smirnov
F-puzzles:
https://f-puzzles.com/?id=yydcxydg
am 25. März 2014, 18:27 Uhr von pin7guin
Hat mir gut gefallen!
am 25. März 2014, 14:30 Uhr von Statistica
@Richard: Thanks for the link. In fact I haven't done this one (even I had, i'm not sure if I would remember it (problem of aging...)) ;-)
am 25. März 2014, 13:09 Uhr von tuace
Fand ich klasse!
am 25. März 2014, 12:58 Uhr von Eisbär
This was fun! Solved it while enjoying my lunch
:-D
am 25. März 2014, 11:29 Uhr von Richard
Added a link to another one of this type.
am 25. März 2014, 11:27 Uhr von Richard
@Statistica: then there is another one for you. Advent puzzle number 15. I will add a link to it.
am 25. März 2014, 11:13 Uhr von Statistica
Interessante Variante, noch nie gesehen!
am 25. März 2014, 09:57 Uhr von Richard
RALehrer gave a good advise recently; to write explicitly that a puzzle can be solved without T&E. Of course this puzzles is also solvable without T&E, although there is a tricky step in the beginning. In fact, it could even be the first placement. I have written that step in a hidden comment.
am 25. März 2014, 07:54 Uhr von Luigi
Ha!!! Ich hab den versteckten Hinweis gefunden!!!
In Z6/S5 kann nur die 2358 stehen.....