The basic idea for this puzzle came to me through niruaL. He painted some pictures with the actual motive hidden in a chessboardpattern by swapping black and white inside the motive.
All 12 pentominos have to be placed in the diagram. Cells with numbers do not contain pentominoparts. On all cells, where pentominos are put on, black and white are swapped. A black cell in the diagram becomes a white one in the solution if it is part of a pentomino and vice versa. After inserting all pentominos the black cells must match the rules of a Tapa: Black squares form a continuous wall and do not cover a 2x2-square.
All cells, which are as well in the given diagram as in the solution white, contain numberhints.
The numbers in the "Q" are rules for the pentominos; they have no effect on the black cells. Like in a TapaQ each number indicates the number of pentominos in the max. 8 cells around this cell. It doesn't matter, wether there are cells without pentominos between them or not.
All other numbers represent normal conditions of a Tapa für the black cells; they have no effect on the pentominos. They indicate the length of the black cell blocks in its neighbouring cells. If there is more than one number in a square, there must be at least one white cell between the black cell blocks.
The upper diagram is the puzzle. The lower one should be just a help for solving.
Solution code: For each cell of the 5. row (from left to right) followed by the 3. column (top to bottom) the corresponding letter of the pentomino. For cells without a pentomino enter '-' (minus).
on 16. July 2013, 23:25 by r45
Tolle Rätselidee und schön konstruiert. Es lohnt sich, im Portal mal zu stöbern.
on 25. October 2011, 20:22 by CHalb
MiR, hatte ich mit meiner Vermutung recht? Ich möchte die Anleitung gerne präzisieren.
on 25. October 2011, 19:26 by CHalb
Kurze und nicht ganz fundierte Antwort auf die Frage von MiR, die ich gerade öffentlich sichtbar gemacht habe: Ich bin ziemlich sicher, dass die Pentominos auch gespiegelt werden dürfen. Aber ich finde meine Lösung nicht und hab grade keine Zeit zum Lösen. Kann da vielleicht jemand von den Lösern ... sozusagen ... aushelfen? Und das nach 30 Lösern, mannomann.
on 25. October 2011, 16:49 by MiR
(gestrichen)
on 31. July 2010, 15:55 by pin7guin
Da schließe ich mich voll und ganz meinem Vorredner an... :-)
on 5. January 2010, 17:44 by Toastbrot
Das Tapa zu erstellen fand ich gar nicht so schwierig. Aber beim Einsortieren der Pentominos in die zu belegenden Felder habe ich mich ganz schön schwer getan.
Die Kombination der beiden Rätselarten finde ich sehr gelungen, da einem bei dem Hin und Her der Schachbrettfelder so schön schummerig vor den Augen wird ;-)
on 5. January 2010, 14:42 by Alex
sehr schoen kniffelig!
on 5. January 2010, 01:08 by lupo
Hat Spaß gemacht, schön komponiert!
on 4. January 2010, 23:04 by ibag
Originell! Danke!
on 4. January 2010, 20:40 by CHalb
pokerke, you are right, thank you. The sentence in the english description was just plain wrong.
on 4. January 2010, 20:37 by pokerke
Very nice and original puzzle.