Sudoku: Place the digits from 1 to 6 in every row, column and 2x3-block.
Battleships: Place one ship of length 3, two ships of length 2, and three ships of length 1 into the grid, so that ships do not touch, not even diagonally. Numbers outside the grid indicate the number of ship segments in the adjacent row or column. In this puzzle, the ship tiles count as blackened cells.
Yin-Yang: Blacken some cells, such that all cells sharing a colour (black and white) are orthogonally connected and no 2x2-region in monochromatic. One black cell is given.
Polyominoes: Blacken some cells. Then dissect the blackened cells into different (connected) polyominoes of size at most four cells. Cells separated by a black line cannot belong to the same polyominoe. Mirrored or rotated polyominoes count as the same polyominoe.
Coral: Blacken some cells, such that all balck cells are connected orthogonally and no 2x2-region is completely black. All white regions have to be connected to the border of the grid. The numbers outside the grid indicate the lengths of all sequences of black cells in the corresponding row or column. A ? indicates a block of unknown length.
S-puzzle: Blacken some cells, such that the blach cells can be decomposed into exactly 6 S-tetrominoes. These tetrominoes can be rotated and mirrored.
Tapa: Blacken some empty cells in a way that all black cells are connected orthogonally and no 2x2-region is completely black. The numbers in the cells indicate the lengths of all blocks of connected black cells surrounding it. Some of the numbers are replaced by ?.
Solution code: First the number of black squares for each row from top to bottom for the battle ships, the yin-yang, the tapa, and the corral. Then the number of different polyominoes in each row from top to bottom for the polyominoes puzzle and the s-puzzle. Then the 4th column of the sudoku. (42 numbers in total)
on 22. September 2022, 16:02 by polar
Incredible idea & flawless execution. Once I figured out how to get started, the rest of the solve was unbelievably smooth. Thank you so much :)
on 24. October 2019, 07:58 by Statistica
Na endlich. Die Anzahl der Versuche, die in Widersprüchen endeten, ist Legion.
on 15. October 2019, 22:45 by Mystoph
Wunderschön! Vielen Dank dafür. Ich war auf der Suche nach einer ähnlichen Herausforderung wie die Roundabouts und bin mehr als glücklich über diese Entdeckung.
on 28. October 2016, 09:36 by ffricke
Das Rätsel hat seinen Reiz durch die ständige Interaktion mit dem zentralen Sudoku, super.
on 19. October 2016, 11:33 by akodi
Was ist ein Polyomino? Hat es eine mindestanzahl von Feldern?
@akodi: Was dieses Rätsel angeht sind 9 Polyominos relevant: 5 Tetrominos ILOST; 2 Triominos; 1Domino und 1 Monomino (ein Feld)
on 18. October 2016, 08:52 by uko50
Geniale neue Idee, exquisit umgesetzt.
on 7. October 2016, 16:44 by Alex
super Idee und toll umgesetzt!
on 6. October 2016, 15:40 by Luigi
Von Anfang bis zum Ende ein ganz fantastisches Rätselerlebnis.
Vielen Dank!!
on 2. October 2016, 21:47 by ibag
Jedenfalls aber eine total tolle Idee!
on 2. October 2016, 21:45 by ibag
Tolle Konstruktion ...
on 1. October 2016, 16:59 by moss
Anleitung präzisiert, um ibags Frage zu beantworten.
on 1. October 2016, 11:30 by ibag
Danke, gut zu wissen.
on 1. October 2016, 11:14 by dm_litv
5
on 1. October 2016, 10:40 by ibag
Sind denn S und N verschiedene Tetrominos? Bzw. gibt es 5 oder 7 Tetrominos?
on 30. September 2016, 22:05 by rob
Die Idee mit den Zahlen als Anzahl Schwarzfelder ist wirklich gut (und für mich neu). Und die Ausführung ist auch klasse, und ganz schön schwer.
on 30. September 2016, 09:25 by moss
Tippfehler beseitigt.