Pento Coral
(Published on 24. November 2012, 20:03 by rimodech)
Place 22 pentominos in the given grid, without overlapping: 11 black pentominos (all different, without P) and 11 white pentominos (all different, without T). The pentominos may be mirrored and/or rotated.
Black pentominos form a coral (all black fields are connected, no 2x2 areas, coral does not touch itself, not even diagonally).
The numbers above the grid indicate the lengths of blocks of coral cells (black cells) in the corresponding columns, but not necessary in the correct order. Between two blocks, there has to be at least one white cell.
The numbers on the right of the grid indicate the lengths of blocks of white cells in the corresponding rows, but not necessary in the correct order. Between two blocks, there has to be at least one black cell.
Solution code: Row 5, column 9 (for each field use the pentomino letter, no matter whether it is black or white)
Solved by relzzup, saskia-daniela, zorant, pokerke, MiR, uvo, Zzzyxas, pirx, pin7guin, ch1983, sloffie, joyal, Luigi, zuzanina, ffricke, derwolf23, Thomster, ildiko, Danielle, r45, dm_litv, kiwijam, Babsi, ... skywalker, sf2l, Ute2, RobertBe, Laje6, sandmoppe, Statistica, Saskia, tuace, adam001, RALehrer, Joo M.Y, Mathi, PRW, Joe Average, rubbeng, Matt, Uhu, amitsowani, puzzler05, FzFeather, misko, polar
Comments
on 14. November 2013, 23:04 by tuace
Great! :)
on 29. November 2012, 19:35 by CHalb
Good idea and very well constructed.
on 26. November 2012, 20:15 by Danielle
I liked it - even when it is with pentominos. ;-)
on 26. November 2012, 19:59 by ildiko
Schönes Rätsel. Mir ging es wie Zzzyxas. Wer lesen kann...
on 25. November 2012, 19:43 by pin7guin
Klasse Rätsel! Es geht immer irgendwo weiter - man muss den Anschluss nur ein bisschen suchen... :-)
Gerne mehr davon!
on 25. November 2012, 14:26 by Zzzyxas
Ich bin ungefähr fünfmal auf einen Widerspruch gestoßen, bis ich auf die geniale Idee gekommen bin, die Anleitung bis zum Ende zu lesen.
on 25. November 2012, 00:00 by pokerke
Great concept, thanks for a beautiful puzzle!