Divide the grid along the gridlines into tetrominoes and write the same letter in all cells of each tetromino. Equal tetrominoes contain the same letter. Every given letter belongs to a different tetromino. Tetrominoes may be rotated and/or mirrored.
Dutch teammate Bram de Laat (Para) pointed out some vey interesting intrinsic logic for this puzzle type. Applying that logic is very useful. I have written this logic in a hidden comment, so after you solved the puzzle you can read it for learning purposes if you didn’t find it yourself during solving.
Solution code: For every cell in row 2 and column 5 the letter of the tetromino. 16 Letters in total.
on 13. May 2022, 07:15 by Nick Smirnov
Penpa:
https://tinyurl.com/y9mbqz26
on 27. October 2012, 14:57 by Luigi
Kleinod=kleiner Schatz... :-))
on 27. October 2012, 12:51 by Richard
Kleinod?
on 27. October 2012, 12:44 by Luigi
Wahnsinn, ohne den Tipp aus Teil 2 hätte ich noch viel länger an diesem schönen Kleinod gesessen.
Mit diesem Tipp sehr schön flüssig zu lösen.
on 26. October 2012, 14:49 by Statistica
Wenn man natürlich versucht, die Tetrominobuchstaben einzugeben und nicht die Buchstaben des Rätsels, kann das ja lange nix werden... Schönes Rätsel!
on 26. October 2012, 13:34 by Richard
@Statistica: they may.
on 26. October 2012, 13:32 by Statistica
Dürfen sich eigentlich gleiche Tetrominos orthogonal berühren?