Place all half dominoes in the grid so that every 3x3-block contains exactly one half domino. The half dominoes may not be rotated or mirrored. Numbers outside the grid indicate the number of dots in the corresponding row/column/diagonal.
Example:
Solve online in Penpa+ (thx Nick Smirnov!)
Puzzle:
Solution code: all numbers in the grid, row by row. (In the example: 158349267)
on 30. October 2022, 07:01 by Richard
Added link and tag for online solving. Thx Nick Smirnov!
on 18. October 2022, 22:17 by Nick Smirnov
Penpa:
https://tinyurl.com/2r278psd
on 21. November 2012, 14:37 by Richard
@uvo: I guess you are right. In fact, this one was meant to be an introduction to the other one.
on 21. November 2012, 14:36 by uvo
I think this puzzle type is much more interesting with several overlapping grids. This is probably the reason why Halbdominos 2 is rated much better.
on 21. November 2012, 12:43 by Richard
I found this type very interesting in WPC, for the reason that 'digits' have different remarks, making it fun to play around with. With just 8 given digits I think it's a pretty nice puzzle, considering it's size and possibilities. But obviously, it is one of my worst rated puzzles, so I have learned something again. Thanks for all comments. :-)
on 21. November 2012, 12:37 by berni
Ich kenne eine Variante, bei der man die Halbdominos frei plazieren kann (das Gitter ist dann etwas größer). Die fand ich ganz gut. Hier ist man meines Erachtens doch stark eingeschränkt.
on 21. November 2012, 10:41 by StefanSch
Ich finde den Rätseltyp nicht so ganz überzeugend. Letzen Endes waren alle Überlegungen "rein mathematisch" und fanden auf einem Extrablatt statt. Das Lösungsgitter hat mir überhaupt nicht geholfen.
on 19. October 2012, 19:10 by r45
Schöne Konstruktion zum Einstieg. Jetzt ist mir klar, warum uvo es im Finale gewählt hat und kein anderer es wollte.
on 19. October 2012, 12:52 by Eisbär
Kniffig... :-D