Logic Masters Deutschland e.V.

Laurins Rosengarten

(Published on 7. December 2010, 20:20 by CHalb)

I gave this puzzle into the designcompetition with the undercovername "Alberichs Rapunzelgarten". Some members of the jury know my son niruaL, so its real name would have probably bypassed the rule of the authors' anonymity.

The dwarfs in the realm of the dwarfking Laurin are in danger. The hedge, that encloses his rosegarden as a screen, has become partly transparent. In addition because of an evil charm the dwarfs are unable to move during daylight. So they depend upon the protection of their caps of invisibility.

The green cells are the hedge. The light green cells are transparent, the dark green intransparent. Each number in the upper part of the diagram represents a dwarf. The brown cells under the hedge are a path, on which five knights move from left to right.

In the beginning the knights are on the cells marked "O". They move step by step on the path from cell to cell. Starting from these positions they go three times simultaneously one step further each. After the three steps it has become so dark that the dwarfs can move themselves again. Neither in the starting positions nor after each of the three steps a dwarf may be visible to a knight. A dwarf is visible to a knight if in straight line between them the hedgecells are transparent and the dwarf wears no cap of invisibility. Of course the knights can look through dwarfs with caps. The dwarfs have nine caps. A dwarf can only wear one cap at any time. During a step of the knights the dwarfs can give their caps to another dwarf. The number gives the strength of the dwarf and thus the exact (not the maximum) distance this dwarf can throw a cap in straight line in one of the six directions.

The directions of views and throws only follow the six cardinal directions of the hexagonal grid:

You have to find the positions of the caps in the starting position and after each step.

Example with two knights and three caps
The blue numbers give the positions of the knights and the caps in starting position O and the following three steps. The red arrows show the paths of the caps.

Rätsel

Solution code: The numbers of dwarfs in ascending order, that wear a cap after the first step of the knights. After this the same information after the second step, so 18 digits altogether. In the example this would be 123223.

Last changed on on 4. February 2014, 17:45

Solved by logik66, pokerke, martin1456, Luigi, Le Ahcim, saskia-daniela, Annie, sandmoppe, Alex, lupo, ibag, ffricke, Ute2, StefanSch, pin7guin, Rollo, Toastbrot, Mody, Mitchsa, PRW, MiR, rimodech, MagicMichi, RobertBe, uvo, zorant, Kekes, joyal, ch1983, Mars, Zzzyxas, AnnaTh, RALehrer, tuace, Thomster, Matt, amitsowani, ildiko
Full list

Comments

on 4. February 2014, 17:45 by CHalb
Stichwort hinzugefügt

on 17. December 2010, 14:44 by CHalb
Beschreibung ergänzt (Wurfweite nicht maximal sondern exakt)

on 17. December 2010, 11:02 by Saskia
Aaahhh ja - das ist es. Na dann auf ein Neues :-) Danke!

on 16. December 2010, 16:03 by CHalb
Ist es vielleicht der Punkt der exakten Wurfweite? Dazu hatte ich von ein paar Lösern Rückmeldungen. Wenn ein Zwerg die Stärke 3 hat, kann er eine Tarnkappe nur exakt 3 Felder weit werfen und nicht kürzer.

on 16. December 2010, 15:33 by Saskia
Auch nach meinem zweitem Anlauf scheinen sich viele Lösungen anzubieten. Wo übersehe ich den Hinweis, dass ich Eindeutigkeit erlange. Das Zwerge mit Tarnkappe durchsichtig sind, ist mir bekannt. Tüftel ...

Last changed on 15. December 2010, 00:29

on 15. December 2010, 00:27 by Rollo
Danke, den hatte ich übersehen.

on 15. December 2010, 00:02 by pin7guin
Puh, geschafft. Diese Zwerge verstehen was von Logistik! :)

on 14. December 2010, 23:09 by ibag
@Rollo: Dann könnte der Zwerg auf 19/1 nach dem ersten Schritt von dem dritten Ritter gesehen werden.

on 12. December 2010, 14:30 by CHalb
Schwierigkeitsgrad von mittelschwer auf leicht geändert

on 7. December 2010, 20:33 by logik66
Mir gefiel die Idee im Wettbewerb sehr gut. Den Lösungsweg fand ich nur etwas zu einfach. Auf jeden Fall eine schöne Idee, die ausbaufähig ist.

Niels

Difficulty:2
Rating:80 %
Solved:38 times
Observed:5 times
ID:0000U6

New Hexagonal

Enter solution

Solution code:

Login