Logic Masters Deutschland e.V.

Pi e Prime Phi Py

(Eingestellt am 23. Januar 2023, 15:10 Uhr von alhobj)

My first puzzle. I think it might have a really hard break-in but I am not sure. I will be really happy for some feedback. No math knowledge is required.

Place 1-9 in each column and row.

The cage contains the 24 first digits of pi (314159265358979323846264). Each digit is orthogonal to the next digit.

There are eight lines, two of them have a single cell overlap, and there is no other overlap. On each of the lines place the first four, six or nine digits of the following:

- e (271828182)

- Golden ratio (161803398)

- Prime numbers (235711131)

- Square root of 2 (141421356)

A line can pass and use the same square twice but never its own starting cell.

F-Puzzles link: https://tinyurl.com/534hm88u

CTC Link: https://tinyurl.com/4j84dkh9

Lösungscode: Column 9 (top to bottom)

Zuletzt geändert am 23. Januar 2023, 20:22 Uhr

Gelöst von drbs, Leonard Hal, nmmc123, lapazhu
Komplette Liste

Kommentare

Zuletzt geändert am 9. Mai 2024, 20:49 Uhr

am 11. April 2024, 20:19 Uhr von Sapio
I'm struggling to figure out how there can only be one overlap...! Are there supposed to be two single cell overlaps between two *pairs* of lines?

---

Sorry for not wording it better (and for not answering sooner). R6C7 is a cell that is clearly part of two lines. The other one has to be R3C6 or R4C6. The final sentence says that a sequence can go through a cell like R3C6 twice. As an example the order could be R4C8, R3C8, R3C7, R3C6, R4C6, R4C7, R3C6, R3C5 and R2C5. Hope that helps!

Zuletzt geändert am 5. Januar 2024, 13:14 Uhr

am 8. Juli 2023, 04:43 Uhr von lapazhu
break-in was a bit tricky for me but I'm not exactly the best solver out there. quite fun puzzle and I'd love to see more!
---
Thank you! I am not the best solver either. I have made one other puzzle but your comment inspired me to start making another puzzle :)

Zuletzt geändert am 24. Januar 2023, 21:35 Uhr

am 24. Januar 2023, 15:18 Uhr von drbs
Nice puzzle and quite approachable. The break in is not difficult, there is only one possible way to make the lines work.
---
Response from alhobj: Thank you drbs!

am 23. Januar 2023, 20:22 Uhr von alhobj
New catchy name

am 23. Januar 2023, 15:17 Uhr von alhobj
Description update

am 23. Januar 2023, 15:12 Uhr von alhobj
Updated links

Schwierigkeit:3
Bewertung:N/A
Gelöst:4 mal
Beobachtet:6 mal
ID:000CPO

Rätselvariante Variantenkombination Metarätsel Platzierungsrätsel Tetrominos Hexominos Polyominos

Lösung abgeben

Lösungscode:

Anmelden