Logic Masters Deutschland e.V.

Collatz's Modifiers

(Eingestellt am 12. September 2022, 03:53 Uhr von mathpesto)

Here's another puzzle involving modified cells, this time inspired by the Collatz conjecture. Comments and ratings are much appreciated, and please check out my other puzzles here. Feel free to post a hidden comment below or message me on Discord if you'd like any help! Enjoy!


Rules:

Normal Sudoku rules apply. There are two "Collatz cells" in every row, column, and 3x3 box. Let n be the digit in a Collatz cell. If n is even, then the cell’s value becomes n/2; if it is odd, then it becomes 3n+1. Cells on a line have the same sum in each region the line is in, taking into account the values of any modified cells. If a line passes through a region multiple times, each individual segment sums separately.


Solve:

Lösungscode: All digits in Collatz cells, starting in Row 1 (left to right), Row 2 (left to right), etc. (18 digits, no spaces)

Zuletzt geändert am 25. September 2022, 22:05 Uhr

Gelöst von crispy16, mnasti2, lsw770770, szy2120109, cdwg2000, Bootenks, jkuo7, MagnusJosefsson, Mrtn, Nordy, djorr, tlepetit, BHUNTER47, cheezzywizz, KNT, ONeill, rmn, polar, FzFeather, Xendari, SKORP17, Bellsita, OGRussHood, karlmortenlunna, Vebby, Uhu, Jaych, zhantyzgz, Counterfeitly, SudokuHero
Komplette Liste

Kommentare

am 15. September 2022, 18:17 Uhr von KNT
Very tricky arithmetic exercise, had to keep a notepad of all the combinations. fun puzzle

am 13. September 2022, 17:27 Uhr von djorr
I can always count on you for some awesome math fun :)

am 12. September 2022, 18:48 Uhr von Nordy
My favorite modified cells puzzle so far! Extra dynamic and interesting because the Collatz cells can increase OR decrease values. Surprisingly, on the easier side of 4-stars for me

am 12. September 2022, 13:58 Uhr von MagnusJosefsson
Very cool and unusual puzzle with a satisfying solution path!

Schwierigkeit:4
Bewertung:96 %
Gelöst:30 mal
Beobachtet:8 mal
ID:000B74

Variantenkombination Neu Online-Solving-Tool

Lösung abgeben

Lösungscode:

Anmelden