Logic Masters Deutschland e.V.

Christmas Pentominoes

(Eingestellt am 4. Dezember 2021, 16:43 Uhr von Will Power)

The set of numbers, from 1-9 each appear exactly 9 times in the grid. All numbers appear once each in all columns. The only 4 pairs of numbers that appear more than once in rows are given. There is no constraint for 3x3 boxes. Numbers in all pentominoes sum to 25 (Merry Christmas). No numbers repeat in the same pentomino. Pentominoes of the same shape have the same set of digits. No pentominoes of different shapes have the same set of digits. The highest and lowest digits in each pentomino are given. Hint: I have used 11 out of the following 12 possible combinations of digits in the puzzle. 12589, 12679, 13489, 13579, 13678, 14569, 14578, 23479, 23569, 23578, 24568, and 34567.

F-Puzzles Colored In

F-Puzzles Plain White

Lösungscode: Row 5 and Column 4, no spaces. Example 123456789987654321

Zuletzt geändert am 4. Dezember 2021, 16:45 Uhr

Gelöst von bernhard, SKORP17, butch02, Expansus, AppleSaws, jalebc, marcmees, Danlej085, ManuH, djorr, sandmoppe, marsigel, ParaNox, geronimo92, rcg, ako, Uhu, kerni89, Gwyn, skywalker, zorant, Hamiltonian_MC, ... metacom, NIGHTCRAULER, zrbakhtiar, Dermerlin, Montikulum, Saskia, Jordan Timm, extremelypuzzled, ludvigr04, Gosciola19, Benji, yusuf17, drf93, Crul, Kekes, pigeoant, Thomster, naggy, jgarber
Komplette Liste

Kommentare

am 11. Dezember 2021, 11:10 Uhr von marsigel
@djorr Thank you!

am 10. Dezember 2021, 20:17 Uhr von djorr
@marsigel this just means that the numbers that repeat in the rows have all been given. There are two 8s in row 3, two 1s in row 4, two 3s in row 4, and two 7s in row 7. There are no more repeated digits in the rows besides those. That's how I understood it, hope this helps!

am 10. Dezember 2021, 10:06 Uhr von marsigel
I don't understand the meaning of the sentence "The only 4 pairs of numbers that appear more than once in rows are given.". Could you please give me an explanation for it?

am 6. Dezember 2021, 00:05 Uhr von DanMeehan
Cute puzzle. Have a Merry Xmas!

am 4. Dezember 2021, 16:45 Uhr von Will Power
Added Sudoku label.

Schwierigkeit:1
Bewertung:78 %
Gelöst:49 mal
Beobachtet:7 mal
ID:0008GM

Online-Solving-Tool Pentominos

Lösung abgeben

Lösungscode:

Anmelden