Logic Masters Deutschland e.V.

Slingshot Sudoku - Return of the Invisible Killers

(Eingestellt am 13. August 2020, 20:00 Uhr von stephane.bura)

This is a harder Slingshot puzzle. If you're not familiar with this ruleset, consider trying another one is this series first.

Thank you for your amazing response to these puzzles.



Normal Sudoku rules apply.

If an arrow is present in a cell, the digit in the cell the arrow comes from appears in the grid in the direction of the arrow at a distance of N cells,
where N is the digit in the arrow's cell.

Furthermore, if the arrow is black, it creates a virtual killer cage from the arrow cell to the projected digit's cell. The sum of the digits in the cage is the product of the arrow cell's digit and the projected digit.



Penpa-Edit link for this puzzle to play it online.
The cell at the "tail" of an arrow in the Penpa grid is the one on the side of the arrow.
Killer slinghots are marked with a black shogi piece.

           







Lösungscode: Row 8, row 9

Zuletzt geändert am 15. August 2020, 22:03 Uhr

Gelöst von udukos, marcmees, Julianl, NikolaZ, Yohann, puzzlemuncher69, henrypijames, Jesper, Mody, geronimo92, birkenfeld, polar, zuzanina, ManuH
Komplette Liste

Kommentare

am 16. August 2020, 05:48 Uhr von Mody
Thanks, now it is clear and better.

am 15. August 2020, 22:03 Uhr von stephane.bura
Changed the appearance of double arrows at @henrypijames ' suggestion.

Zuletzt geändert am 15. August 2020, 21:52 Uhr

am 15. August 2020, 19:47 Uhr von henrypijames
@stephane.bura: My comment was actually directed at you - I'm suggesting that you redraw the double arrows into nested arrows like in 3ZW.

---
Thanks. I will.

am 14. August 2020, 11:30 Uhr von henrypijames
Or just deconstruct each of the double arrow into two arrows (as in the previous nested slingshot example).

am 13. August 2020, 21:50 Uhr von marcmees
very very nice ... again new slingshot tactics emerge.

Schwierigkeit:4
Bewertung:95 %
Gelöst:14 mal
Beobachtet:8 mal
ID:00041J

Rätselvariante

Lösung abgeben

Lösungscode:

Anmelden